

The H atoms were placed in calculated positions with C H $0.95 \AA$ and isotropic displacement parameters set at 1.3 times those of the bonded C atoms. Methyl H atoms at C13 were calculated in conformations guided by difference maps. Attempts at refining the H atoms in least squares proved unsuccessful and they were thus left in calculated unrefined positions. The approximate pseudo-center caused no refinement problems. The highest residual density in the difference map is located $0.988 \AA$ from Pd1A.

Data collection: CAD-4 Operations Manual (Enraf-Nonius, 1977). Cell refinement: CAD-4 Operations Manual. Data reduction: PROCESS in MolEN (Fair, 1990). Program(s) used to solve structure: Patterson and Fourier methods in MolEN. Program(s) used to refine structure: LSFM in MolEN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: CIF IN in MolEN.

The purchase of the diffractometer was made possible by a National Science Foundation chemical instrumentation grant, which we gratefully acknowledge. Improvements to the LSU X-ray Crystallography Facility were supported by grant No. LEQSF(1996-97)-ENH-TR-10, administered by the Louisiana Board of Regents. DRB wishes to acknowledge the Chancellor's Student Aid Fund which made this structure determination possible.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1380). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.

Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Cnistal Structure Analysis. Enraf-Nonius, Delft. The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, Y.-H. (1997). PhD thesis, Louisiana State University, USA.
Newkome, G. R., Pucketı, W. E., Gupta, V. K. \& Kiefer, G. E. (1986). Chem. Rev. 86, 451-489.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Yoneda, A., Hakushi, T., Newkome, G. R. \& Fronczek, F. R. (1994). Organometallics, 13, 4912-4918.
Yoneda. A., Newkome, G. R., Morimoto, Y., Higuchi, Y. \& Yasuoka, N. (I993). Acta Cryst. C49, 476-478.

Yoneda, A., Ouchi, M., Hakushi, T., Newkome, G. R. \& Fronczek. F. R. (1993). Chem. Lett. pp. 709-712.

Zachariasen, W. H. (1963). Acta Crist. 16, 1139-1144.

Acta Cryst. (1998). C54, 1441-1444

The Inserting Host-Guest System in $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]_{8}\left[\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{V}_{22} \mathrm{O}_{54}\right] \cdot \mathbf{4 . 2 5} \mathrm{H}_{2} \mathrm{O}$

Thomas Chirayil, Peter Y. Zavali and M. Stanley Whittingham

Materials Research Center, State University of New York at Binghamton, Binghamton, NY 13902-6016, USA. E-mail: zavalij@binghamton.edu
(Received 8 December 1997; accepted 5 May 1998)

Abstract

The title compound, octakis(tetramethylammonium) docosavanadate acetate 4.25 -hydrate, was synthesized and found to crystallize in the tetragonal space group $P 4_{2} / n .22$ vanadium square pyramids form a barrelshaped cluster which hosts the acetate ion; this is the first case where an organic molecule is hosted by a vanadium oxide cluster. The clusters are linked into a three-dimensional net by hydrogen bonds with water molecules. Tetramethylammonium ions fill the space between the clusters.

Comment

Recently, it was found that mild hydrothermal synthesis in the presence of the tetramethylammonium template, $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$(TMA), leads to the formation of metastable vanadium oxide structures with open frameworks: (TMA) $\mathrm{V}_{4} \mathrm{O}_{10}$ (Zavalij et al., 1996), $\mathrm{Li}_{x} \mathrm{~V}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Chirayil et al., 1996), (TMA) $\mathrm{V}_{3} \mathrm{O}_{7}$ (Zavalij et al., 1997a) and (TMA) $\mathrm{V}_{8} \mathrm{O}_{20}$ (Chirayil et al., 1997). Nevertheless, polyvanadate clusters can often be formed as well. We previously reported the decavanadate compounds with mixed cations $\left[\mathrm{Li}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{2}(\mathrm{TMA})_{4}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Zavalij et al., 1997) and $\mathrm{Na}_{4}(\mathrm{TMA})_{2}\left[\mathrm{~V}_{10} \mathrm{O}_{28}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$
(Zavalij et al., 1997b), and also (TMA) ${ }_{4}\left[\mathrm{H}_{2} \mathrm{~V}_{10} \mathrm{O}_{28}\right]$ $\left(\mathrm{CH}_{3} \mathrm{COOH}\right) .2 .7 \mathrm{H}_{2} \mathrm{O}$ (Pecquenard et al., 1998).

This work presents a new compound, (I), formed by a docosavanadate cluster, i.e. $\mathrm{V}_{22} \mathrm{O}_{54}$, tetramethylammonium cations, and water of crystallization. An acetate ion forms an inserting guest-host system with the cluster. This type of cluster can also host such ions as perchlorate in $\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{4}\right]_{6}\left[\left(\mathrm{ClO}_{4}\right)\right.$ $\mathrm{HV}_{22} \mathrm{O}_{54}$] (Müller et al., 1991) and molybdate in (TMA) $)_{8}\left[\left(\mathrm{MoO}_{4}\right) \mathrm{V}_{22} \mathrm{O}_{54}\right] \mathrm{Cl}$ (Nazar, 1996). The latter would be isostructural with the title compound but for the guest anion and solvent (Cl^{-}instead of water of crystallization). The size of this ellipsoidal cave can accommodate an anion even bigger than acetate since the distances from its center to the surrounding O atoms vary from 3.8 to $4.4 \AA$.

(I)

The coordination polyhedra of the V atoms are square pyramids (SPs) that share edges and corners and form a barrel-shaped docosavanadate cluster (Fig. 1). A double-bonded O atom at the apex of the SP is directed outside the cluster. Two SPs form the top and bottom of the barrel-shaped cluster and are connected together by four chains. Each of these chains consists of five SPs that share the neighboring edges of the base. The local or non-crystallographic symmetry of the docosavanadate cluster, $\overline{4} m 2$, is higher than crystallographic symmetry $\overline{4}$, which is probably due to the packing effect since the local symmetry of the cluster does not match the crystallographic axes (Fig. 2). The $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion hosted in the cluster is disordered in two opposite directions due to coincidence of the $\overline{4}$ axis and the center of the $\mathrm{C}-\mathrm{C}$ bond, so that the carboxyl groups are directed in opposite directions. Therefore, the occupation factor is 1 for the $\mathrm{Cl} a$ and 0.5 for the $\mathrm{Ol} a$ atom. The guest ions are situated so that the O atoms are directed toward the bases of 20 SPs [V...Ola $2.8(1)-$ $3.2(1) \AA$ and $\left.\mathrm{O}=\mathrm{V} \cdots \mathrm{O} 1 a 161(1)-175(1)^{\circ}\right]$. It is very common for a vanadium $(+4,+5)$ oxide framework to complete square-pyramidal coordination to a distorted octahedron by an additional weakly bonded O atom or other donor of electrons in a position across from the double-bonded O atom.

Fig. 1. Displacement ellipsoid plots of the $\left[\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{V}_{22} \mathrm{O}_{54}\right]^{8-}$ and $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$ions shown at 50% probability levels.

Fig. 2. The packing of the $\left[\left(\mathrm{CH}_{3} \mathrm{COO}\right) \mathrm{V}_{22} \mathrm{O}_{54}\right]^{8-}$ anions. the $\left[\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4}\right]^{+}$cations and the disordered water molecules viewed along the c axis. Hydrogen bonds are show'n as dashed lines. [Symmetry code: (i) $\frac{1}{2}+x, \frac{1}{2}+y .1-z$]

The particularly disordered water molecules, whose occupation factors are 0.87 (4) and 0.63 (2) for $\mathrm{O} 1 w$ and $\mathrm{O} 2 w$, respectively, form an unusual octahedral association (Fig. 2). These water molecules are linked to each other and to the vanadate cluster by hydrogen bonds so that they form a layer in the $a b$ plane. Two other hydrogen bonds, Olw $\cdots \mathrm{O}$, link the layers together. They are parallel to the c axis and are therefore not shown in Fig. 2. The TMA cations work as separators between each pair of clusters in the $a b$ plane. One of the TMA ions (N 2) is disordered, so that its two
orientations, with probabilities 75 and 25%, differ from each other by an $\sim 60^{\circ}$ rotation about the $\mathrm{C} 5-\mathrm{N} 2$ bond.

Experimental

The reaction mixture consisted of $\mathrm{V}_{2} \mathrm{O}_{5}$, (TMA)OH and LiOH in a $1: 2: 1$ molar ratio acidified with 3 M acetic acid in the pH range 5.2-6.2. Hydrothermal synthesis was conducted at 458 K for 3 d . The cluster compound is often encountered with the known phases (TMA) $\mathrm{V}_{3} \mathrm{O}_{7}$ (Zavalij et al., 1997a), (TMA) $\mathrm{V}_{4} \mathrm{O}_{10}$ (Zavalij et al., 1996) and $\mathrm{Li}_{x} \mathrm{~V}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (Chirayil et al., 1996). Black crystals of (I) were manually separated for single-crystal X-ray diffraction analysis.

Crystal data

$\left(\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{~N}\right)_{8}\left[\mathrm{~V}_{22} \mathrm{O}_{54}\right]-$
$\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right) \cdot 4.25 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=2713.4$
Tetragonal
$P 4_{2} / n$
$a=14.4890(2) \AA$
$c=21.5432(3) \AA$
$V=4522.6(2) \AA^{3}$
$Z=2$
$D_{x}=1.993 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction:
multi-scan (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.57, T_{\text {max }}=0.67$
27168 measured reflections
5459 independent reflections

Refinement

Refinement on F

$$
(\Delta / \sigma)_{\max }=0.01
$$

$R=0.052$
$w R=0.076$
$S=1.53$
4991 reflections
321 parameters
H atoms not refined
$w^{\prime}=1 /\left[\sigma\left(F_{o}\right)^{2}+0.004 F_{o}^{2}\right]$
Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	Occupancy	x	y	2	$U_{\text {eq }}$
V1	1.0	1/4	1/4	0.03148 (4)	0.0220 (3)
V2	1.0	0.23621 (4)	0.52889 (4)	0.21924 (3)	0.0213 (2)
V3	1.0	0.41587 (4)	0.47764 (4)	0.27946 (3)	0.0213 (2)
$\checkmark 4$	1.0	0.35498 (5)	0.44208 (5)	0.11479 (3)	0.0235 (2)
V5	1.0	0.02899 (4)	0.27279 (5)	0.11561 (3)	0.0232 (2)
V6	1.0	().15704 (4)	0.42073 (4)	0.07909 (3)	0.0214 (2)
01	1.0	1/4	1/4	-0.0435 (2)	0.0341 (13)
O 2	1.0	0.2319 (2)	0.6396 (2)	0.21465 (1)	0.0351 (10)
O3	1.0	0.4809 (2)	0.5682 (2)	0.2807 (2)	0.0356 (10)

O4	1.0	0.4077 (2)	0.5201 (2)	$0.0748(2)$	0.0377(10)
O5	1.0	$-0.0652(2)$	0.2705 (3)	0.0757 (2)	0.0387 (10)
O6	1.0	0.1208 (2)	0.4844 (2)	(0.02232 (2)	$0.0360(10)$
O7	1.0	0.1224 (2)	0.4895 (2)	0.23468 (1)	0.0307 (9)
O8	1.0	0.4344 (2)	0.3481 (2)	0.12371 (1)	0.0295 (9)
O9	1.0	0.2784 (2)	0.3760 (2)	0.05653 (1)	0.0244 (8)
O10	1.0	0.1297 (2)	0.2953 (2)	0.05835 (1)	0.0247 (8)
O11	1.0	0.3595 (2)	0.4799 (2)	0.19908 (1)	0.0285 (8)
O12	1.0	0.2864 (2)	0.5065 (2)	0.29973 (1)	$0.0305(9)$
O13	1.0	0.2258 (2)	0.4941 (2)	().13063 (1)	0.0277 (8)
014	1.0	0.0591 (2)	0.4)57 (2)	0.13231 (1)	0.0254 (8)
O1n	0.87 (4)	1/4	1/4	0.6694 (4)	0.158 (9)
$\mathrm{O} 2 n \cdot$	0.63 (2)	O.1540 (7)	0.1421 (9)	0.7535 (5)	0.119(6)
NI	1.0	0.9579 (3)	0.27(05 (3)	0.8919 (2)	0.0326(11)
Cl	1.0	0.9464 (6)	0.2162 (5)	0.8328 (3)	0.070 (3)
C2	1.0	1.0237 (4)	0.2164 (5)	0.9319 (3)	0.052 (2)
C3	1.0	0.8676 (4)	0.2769 (6)	0.9237 (4)	0.070 (3)
C4	1.0	0.9934 (6)	0.3632 (5)	0.8776 (5)	0.087 (4)
N2	1.0	0.7933 (3)	0.0535 (3)	$0.1100(2)$	0.0418 (13)
C5	1.0	0.7239 (6)	-0.0220(7)	0.1117 (4)	0.080 (3)
C6a	0.75 (2)	0.7656 (8)	0.1177 (8)	0.0529 (5)	0.080 (4)
C7a	0.75 (2)	0.793 (2)	0.1088 (9)	0.1668 (5)	0.145 (8)
C8a	0.75 (2)	0.8862 (7)	0.0190 (11)	0.0917 (7)	0.098 (6)
C6b	0.25 (2)	0.879 (2)	0.013 (2)	0.161 (2)	0.072 (10)
C7b	0.25 (2)	0.8568 (13)	0.048 (2)	0.0555 (9)	0.057 (8)
C8b	0.25 (2)	0.766 (2)	0.142 (2)	0.1402 (14)	0.079 (11)
Cla	1.0	1/4	1/4	0.2131 (12)	0.144 (12)
Ola	0.5	0.289 (2)	0.192 (3)	O.1814(12)	0.24 (2)

Table 2. Selected bond lengths (\AA)

VI-OI	1.615 (5)	V4-09	1.929 (3)
V1-09	1.948 (3)	V4-O13	2.047 (3)
$\mathrm{Vl}-\mathrm{O9}^{1}$	1.948 (3)	VS-OS	1.613 (3)
$\mathrm{V} 1-\mathrm{O} 10$	1.950 (3)	$\mathrm{V} 5-\mathrm{O} 8^{1}$	1.839 (3)
$\mathrm{V} 1-\mathrm{O} 10^{\prime}$	1.950 (3)	$\mathrm{V} 5-\mathrm{O} 12^{\text {m }}$	$1.905(3)$
$\mathrm{V} 2-\mathrm{O} 2$	1.609 (3)	V5-O10	1.938 (3)
$\mathrm{V} 2-\mathrm{O} 7$	1.776 (3)	V5-O14	2.007 (3)
$\mathrm{V} 2-\mathrm{O} 12$	1.908 (3)	V6-06	$1.620(3)$
$\mathrm{V} 2-\mathrm{Oll}$	1.971 (3)	V6-013	1.831 (3)
$\mathrm{V} 2-\mathrm{O} 13$	1.980 (3)	V6-O14	1.837 (3)
V3-03	1.616 (3)	V6-O10	1.913 (3)
V $3-07^{11}$	1.826 (3)	$\mathrm{V} 6-\mathrm{O} 9$	1.936 (3)
V3-011	1.915 (3)	$\mathrm{Ol}-\mathrm{Ol} n^{\text {n }}$	2.712 (10)
V3-O12	1.971 (3)	$\mathrm{O} 3-\mathrm{O} 2 n^{\prime \prime}$	2.825 (11)
V3-O14"	1.979 (3)	$\mathrm{O} 1 \mathrm{n}-\mathrm{O} 2 n^{*}$	2.671 (13)
V4-O4	1.613 (4)	$\mathrm{O} 1 n-\mathrm{O} 2 n$	2.768 (13)
V4-O8	1.793 (3)	$\mathrm{O} 2 \mathrm{n}-\mathrm{O} 2 \mathrm{n}^{\prime}$	2.96 (2)
V4-O11	1.898 (3)		

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}-y$, z; (ii) $y, \frac{1}{2}-x, \frac{1}{2}-z$; (iii) $\frac{1}{2}-y, x, \frac{1}{2}-z$; (iv) $\frac{1}{2}+x, \frac{1}{2}+y, 1-z ;(\mathrm{v}) y, \frac{1}{2}-x, \frac{3}{2}-z$.

The crystal structure of the title compound was solved by direct methods. All V atoms and most O atoms were located from the E map. The remainder of the non-H atoms were found from the following difference Fourier syntheses. To locate the disordered acetate, the two-dimensional sections of the difference Fourier map were built. H atoms were located from difference Fourier synthesis, except for those of the disordered residues.

Data collection: SMART (Siemens, 1995). Cell refinement: SAINT (Siemens, 1995). Data reduction: SAINT. Program(s) used to solve structure: CSD (Akselrud et al., 1993). Program(s) used to refine structure: CSD. Molecular graphics: PLATON97 and PLUTON97 (Spek, 1990). Software used to prepare material for publication: CSD.

The work at Binghamton was supported by the National Science Foundation through grant DMR9422667. We also thank Professor Jon Zubieta from Syracuse University for the use of the single-crystal diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BK1386). Services for accessing these data are described at the back of the journal.

References

Akselrud, L. G., Zavalii, P. Y., Grin, Yu. N., Pecharsky, V. K.. Baumgartner, B. \& Wolfel, E. (1993). Mater. Sci. Forum, 133-136. 335-340.
Chirayil, T., Zavalij, P. Y. \& Whittingham, M. S. (1996). Solid State Ion. 84, 163-168.
Chirayil, T., Zavalij, P. Y. \& Whittingham, M. S. (1997). J. Mater. Chem. pp. 2193-2197.
Müller, A., Krickemeyer, E., Penk, M., Rohlfing, R., Armatage. A. \& Bögge. H. (1991). Angew. Chem. Int. Ed. Engl. 30, 1674-1677.
Nazar, L. F. (1996). Personal communication.
Pecquenard, B., Zavalij. P. Y. \& Whittingham, M. S. (1998). Acta Cryst. C54. In the press.
Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Siemens (1995). SMART and SAINT. Data Collection and Processing Software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Zavalij, P. Y., Chirayil, T. \& Whittingham, M. S. (1997a). Acta Cryst. C53, 879-881.
Zavalij, P. Y., Chirayil, T. \& Whittingham, M. S. (1997b). Z. Kristallogr. 212, 321-322.
Zavalij, P. Y., Whittingham, M. S., Boylan, E. A., Pecharsky, V. K. \& Jacobson, R. A. (1996). Z. Kristallogr. 211, 464.
Zavalij, P. Y., Whittingham, M. S., Chirayil, T., Pecharsky, V. K. \& Jacobson, R. A. (1997). Acta Cryst. C53, 170-171.

Acta Cryst. (1998). C54, 1444-1446

Bis $\{[2,6$-diacetylpyridine bis(2-furoyl-hydrazone)(1-)]dimethyltin(IV)\} transTetrachlorodimethylstannate(IV)

Regina H. P. Francisco, ${ }^{a *}$ Patricla C. Moreno, ${ }^{a}$ M. Teresa do P. Gambardella, ${ }^{a}$ Gerimario F. de Sousa, ${ }^{b}$ M. Beatriz P. Mangas ${ }^{b}$ and Anuar Abras ${ }^{c}$
${ }^{a}$ Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Caixa Postal 870, 13560.970 Sao Carlos, SP, Brazil, ${ }^{b}$ Departamento de Quimica, ICC, Universidade de Brasilia, 70910.900 Brasilia, DF, Brazil, and ${ }^{\text {c }}$ Departamento de Fisica, ICEx, Universidade Federal de Minas Gerais, 30161.970 Belo Horizonte, MG, Brazil. E-mail: reginap@iqsc.sc.usp.br

(Received 14 May 1997; accepted 21 April 1998)

Abstract

The structure of the title compound, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{19} \mathrm{H}_{16}-\right.\right.$ $\left.\left.\mathrm{N}_{5} \mathrm{O}_{4}\right)\right]_{2}\left[\mathrm{SnCl}_{4}\left(\mathrm{CH}_{3}\right)_{2}\right]$, revealed the presence of two complexes. One is monocationic and consists of a

heptacoordinated $\mathrm{Sn}^{\mathrm{IV}}$ atom in a distorted pentagonalbipyramidal geometry, with an aroylhydrazone ligand acting as a pentadentate species in the equatorial plane and two methyl groups in axial positions. The other complex is dianionic and has a hexacoordinated $\mathrm{Sn}^{\mathrm{IV}}$ atom at the origin.

Comment

The chelating properties of 2,6 -diacetylpyridine bis(aroylhydrazone)s (aroyl is benzoyl, picolinoyl, salicyloyl, thenoyl or aminobenzoyl) have been investigated and only one complexation mode has been found, i.e. with the aroylhydrazone ligands acting as pentadentate molecules and coordinating through the two enolate O , the two azomethine N and the pyridyl N atoms (Pelizzi et al., 1984; Carini et al., 1989).

The structure determination of bis $\{[2,6$-diacetylpyridine bis(2-furoylhydrazone)(1-)]dimethyltin(IV)\} trans-tetrachlorodimethylstannate(IV), (I), revealed the

(I)
occurrence of two monocationic complexes surrounding a dianionic one, as shown in Fig. 1.
In the cation, $\left[\mathrm{Me}_{2} \mathrm{Sn} \text { (Hdapf) }\right]^{+}$, where Hdapf is $2,6-$ diacetylpyridine bis(2-furoylhydrazone), the ligand in the equatorial plane of the coordination polyhedron is planar, except for the furan groups, which have a dihedral angle of 24.7 (3) ${ }^{\circ}$ between them. One furan ring (C15-C18, O3) makes a dihedral angle of 21.7 (3) ${ }^{\circ}$ with the equatorial plane and an angle of $5.5(3)^{\circ}$ with the other furan ring ($\mathrm{C} 19-\mathrm{C} 22, \mathrm{O} 4$). Both furan rings have atoms with high displacement parameters, especially the C21, C22 and O4 atoms. The presence of a disorder effect in these atoms was investigated, but the calculations did not show any significant improvement of the model.

A selection of bond distances and angles are given in Table 1. Differences can be observed between the bond parameters in both arms of the ligand. The discrepancies in the distances were found in the pairs Sn2$\mathrm{O} 1 / \mathrm{Sn} 2-\mathrm{O} 2$ and $\mathrm{Sn} 2-\mathrm{N} 2 / \mathrm{Sn} 2-\mathrm{N} 4$. The pairs of discrepant angles are $\mathrm{Ol}-\mathrm{Sn} 2-\mathrm{N} 2 / \mathrm{O} 2-\mathrm{Sn} 2-\mathrm{N} 4$ and $\mathrm{N} 2-\mathrm{Sn} 2-\mathrm{N} 3 / \mathrm{N} 4-\mathrm{Sn} 2-\mathrm{N} 3$. These differences occur because during the complexation process, the azomethine N 1 atom loses its proton and the azomethine N5

